Circles - Class XI

Related Questions with Solutions

Questions

Quetion: 01

If a circle *C*, whose radius is 3, touches externally the circle, $x^2 + y^2 + 2x - 4y - 4 = 0$ at the point (2, 2), then the length of the intercept cut by this circle *C*, on the *x*-axis is equal to : A. $2\sqrt{3}$ B. $3\sqrt{2}$

 $\begin{array}{c} \text{C.} \sqrt{5} \\ \text{D.} \ 2\sqrt{5} \end{array}$

Solutions

Solution: 01

Centre of circle $x^2 + y^2 + 2x - 4y - 4 = 0$ is (-1, 2) and radius $= \sqrt{1 + 4 + 4} = 3$ Let [h, k] be the centre of another circle.

Now,
$$\frac{h-1}{2} = 2$$
 and $\frac{k+2}{2} = 2$
 $\Rightarrow h = 4 + 1 = 5$ and $k = 4 - 2 = 2$
So, centre of required circle is [5, 2] and radius = 3.
 \therefore Equation of circle becomes $(x-5)^2 + (y-2)^2 = (3)^2$
 $\Rightarrow x^2 + y^2 - 10x - 4y + 20 = 0$ [i]
Length of intercept made by [i] on x-axis
 $= 2\sqrt{g^2 - c} = 2\sqrt{25 - 20}$
 $(\because g = -5, c = 20)$
 $= 2\sqrt{5}$

Correct Options

Answer:01 Correct Options: D